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Abstract 

The problem of resonance pressure broadening of spectral lines in monatomie 
gases is discussed using a resolvent operator formalism. A differential equation 
is developed to determine the resolvent, and it is shown how its solution for a 
limiting case yields the familiar classical path approximation for the transla- 
tional motion of the atoms, and how quantum corrections may be systematically 
studied. Commonly used limiting cases within the classical path approximation 
(two-body static and impact approximations) are also exhibited as limiting 
cases, with methods for systematic evaluation of corrections. Closed form 
solutions are obtained for the two-body static and impact cases. The results 
are compared with available experimental data, and generally satisfactory 
agreement is obtained. Of some theoretical interest is the formalism, which 
embraces all the usual approximations and permits them to be studied together 
with corrections to them from a unified point of view. iYew results of more 
practical interest are the closed form solutions for the limiting cases, and the 
estimation of the lowest-order quantum corrections, which are appreciable 
under some experimental conditions. 

1. Introduction 

In  recent years, there has been a revival of interest in the theory 
of the pressure broadening of spectral lines in gases. This problem 
is of some interest in itself and also provides an instructive illustration 
of various general techniques. Thus, Fano (1963) has considered 
pressure broadening as a prototype of relaxation, using a Liouville 
operator formalism, and this technique has been further applied by 
Ben-Reuven (1966a, b). Ross (1966) has considered the problem from 
the viewpoint of general many-body theory. 

In  all cases, the problem is to calculate the shape of the spectral line 
in terms of the properties of the isolated atoms or molecules, and of 
the pressure and temperature of the gas. From a formal point of view, 
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most of the above-mentioned work is very general ; but  when actual 
numerical results are calculated, approximations must of course be 
made. In nearly all work which leads to numerical answers, the follow- 
ing approximations are made: First, one makes the 'classical path'  
approximation, i.e., one considers the translational motion of the 
atoms (or molecules) to be describable by  classical mechanics. Second, 
the ' two-body' approximation is made. This means that  interactions 
or collisions between different pairs of atoms are treated as in- 
dependent of one another and (in some sense) additive in their effect 
on the line shape. As Fano (1963) has made clear, this can be thought 
of as expanding the line width in a power series in the density and 
keeping only the linear term. In  this approximation, obviously, the 
width varies linearly with density. Beyond these approximations, 
there are two opposite limiting eases for which results can be obtMned: 
if the atoms are moving very slowly, on e can make the 'static' approxi- 
mation, in which their positions are treated as fixed. In the opposite 
limit, where the velocities are very high, the 'impact' approximation 
of Baranger (1958a, b) may be used, in which the width can be shown 
to be expressible in terms of collision cross-sections. 

In  the present work, we concern ourselves with a particular case of 
considerable interest: the 'resonant' or 'self' broadening of the 
spectrum of a monatomic gas due to dipole-dipole interactions. This 
differs from the broadening by  foreign gases more commonly treated 
in that  the interaction can transfer the excitation from one atom to 
another. This means that  no clear distinction can be made between 
perturbed atom and perturber; and that  the interaction cannot be 
represented simply as an effective potential energy seen by  the 
absorbing (or emitting) atom in its two states, as assumed in much 
of the theoretical work. The speeiM properties of the resonant case 
have recently been emphasized by  Bezzerides (1967). Earlier, a result 
which might be called the 'n-body theorem' had been proved (Reek 
et al., 1965): For the resonant ease, in the static limit, it is never 
permissable to use the two-body approximation except on the far 
wings of the line. Near the center (i.e., within a line width), interactions 
involving arbitrarily many atoms must be taken into account. 

Despite these apparent difficulties, approximate calculations based 
on the two-body impact limit by  Ali & Griem (1965, 6), Omont 
(1965, 6, 7), and wa tanabe  (1965a, b) led to good agreement with the 
experimental results of Kuhn & Vaughan (1964), and Vaughan (1965) 
on the emission spectra of helium. These experiments showed a linear 
dependence of the width on the density, in agreement with the two- 
body approximation, and the coefficient agreed rather well with 
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theory. On the other hand, the results of Lauristion & Welch (1951) 
on the alkali metals seem to require many-body effects to explain 
them (Reck, et al., 1965). 

From the experimental results, therefore, it would appear that  the 
n-body theorem, which has been proved rigorously for the static 
limit, may not hold in the opposite (impact) limit. This is by  no means 
obvious, however, as may be seen by  comparing the situation in the 
resonant case with that  of the nonresonant. In the case of non- 
resonant broadening by  a foreign gas, let an excited atom A experience 
a collision with a perturber B. After the collision, the excitation will 
still be on A, since energy conservation forbids its transfer to B. 
Hence, except for a phase factor which disappears in the subsequent 
averaging, the initial internal state of the system is the same prior to 
a subsequent collision with another perturber C as it would have been 
if the A - B  collision had never taken place. This is what permits one, 
in the nonresonant case, to treat  successive collisions as independent. 
In  the resonant case, however, B is an atom identical with A, and 
hence may very well have the excitation transferred to it in the 
collision. I t  follows that  the initial state for a subsequent A - C  collision 
will depend very much on what happened in the A - B  collision, so it 
is not clear that  they can be treated as independent. All & Griem 
(1965) a t tempt  to avoid this difficulty by initially having the excita- 
tion shared symmetrically between A and B, and showing that  after 
the collision it is still shared between them in the same way. This does 
not really avoid the problem, however. In order to treat a subsequent 
A - C  collision in the same way, the excitation would have to be shared 
symmetrically between A and C, not A and B. Thus, it remains true 
that  initial conditions for each collision depend critically on the 
previous ones. Nevertheless, we shall see that  the conclusion is 
correct: In the impact limit, where velocities are large, it is permissible 
to use the two-body approximation. 

The purpose of the present work is two-fold: First, and of most 
interest from a fundamental point of view, we wish to formulate the 
theory in a way which permits a systematic s tudy of the approach 
to the classical path limit and the other limiting cases. For this pur- 
pose, a resolvent operator formalism is employed. I t  will be seen how 
the usual approximations appear as limiting eases, and it will be 
possible to s tudy systematically their limits of validity and the 
corrections to them. I t  is hoped that  the techniques employed here 
will be useful for other line-shape problems, and indeed for any 
problems involving the behavior of quantum mechanical systems in 
the vicinity of the classical limit. 
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Secondly, it is a peculiar property of the dipole-dipole, r -8 inter- 
action that  the two-body impact and static limits yield essentially 
the same formula for the line shape. In both cases, one finds a Lorentz- 
ian shape with half-width given by  a~Jr2~2, where JK is the density 
in atoms per cubic centimeter, h~/2t~ is the dipole matrix element, 
and a is a dimensionless constant. Thus, the qualitative behavior 
of the line width is the same in both cases, and one can distinguish 
between them experimentally only if one has exact values for the 
coefficient a in the two cases. The question also arises of whether the 
two coefficients are equal. We have succeeded in obtaining closed- 
form solutions for both limiting cases. The coefficients are found not 
to be equal. Approximate evaluations of the coefficient for the impact 
case have been at tempted before, both by  simple perturbation theory 
(All & Griem, 1965, 6), and by  rather elaborate machine calculations 
(Omont, 1965, 6, 7; Watanabe, 1965a, b). The exact answer turns out 
to be lower than the results of these calculations by  somewhat less than 
10%. The static case, as far as we are aware, has not been done in 
closed form before, although it is by  far the easier of the two. Having 
done these calculations, we are able to compare the results with 
experiment, and find generally good agreement, with different 
approximations being applicable to different experimental situa- 
tions. 

Many of the results of this article are not new, though the unifying 
formalism enables one to see them from a new point of view. New 
results of practical interest are the closed form solutions and the s tudy 
of the lowest order quantum corrections, especially for the impact 
limit. 

The contents of the various sections may  be summarized as 
follows : 

Section 2 explains the notation and Hamiltonian used, and exhibits 
the basic formula for the complex refractive index in terms of the 
resolvent operator. 

In Section 3, a differential equation is derived to determine the 
resolvent, and it is shown how to approach the classical limit and find 
a formal solution for that  limit. 

Section 4 takes up the two-body static and impact approximations. 
Sections 5 and 6 discuss the closed-form solutions for the static 

and impact cases, respectively. 
Sections 7 and 8 treat  the corrections due to many-body effects 

and quantum effects, respectively. 
In Section 9, the results are compared with experiment. 
There is a brief concluding discussion in Section 10. 
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2. ivotation ; Hamiltonian ; Basic Formula for Refractive Index 

Apart from minor changes, the notation to be used is the same as 
that  of Reck et al. (1965). Here, we recapitulate it briefly. 

The system under consideration is an ideal, monatomic gas of iv 
identical atoms, confined in a volume V. We are interested in the 
limit, iV, V-+  0% with the density ~/V = IV/V remaining constant. 
For the sake of definiteness, each atom is assumed to have a 1S 
ground state and a triply degenerate 1p excited level, the energy 
difference between the two being by0. For the study of pure resonant 
effects, no other states need to be considered. Effects of quantum 
statistics are neglected. 

The 'initial' state 10} is a state of the gas in which all atoms are in 
their ground states, and each atom A has momentum PA = hqa. 
The momenta are distributed according to a Boltzmann distribution 
at some temperature T. The zero of energy is chosen to be that  of the 
state L0). 

States in which one or more atoms have become excited, and/or 
have acquired a momentum different from what they have in the 
state I0}, are denoted by  listing the excited atoms and/or their excess 
momenta in the ket symbol. Thus, I Ai, • denotes a state in which 
atom A has become excited, with polarization in the/-direction, and 
has a momentum h(q A § u), with all other atoms being as they are 
in [0}. The polarization direction is the direction of the dipole moment 
matrix element linking the excited state with the ground state: I f  
we denote the dipole moment operator for atom A by  h 1/2 ~A, then 

the letter/x by  itself denotes the value of the matrix element. 
I t  was shown by  Reck et al. (1965) that  the transverse frequency- 

and wave number-dependent susceptibility _F(v,• (defined as 47r 
times the ordinary susceptibility) is given by  

F(v, • - 4~t~2 V ~ zSAJ'x(A)IR(v)[Ak'• (2.1) 

where e is a unit polarization vector perpendicular to • and R is the 
resolvent operator expressed in frequency units: 

R ( v )  = (~ - ~ l h )  - ~  

The frequency v is assumed to have a small positive imaginary part. 
The summation convention for repeated indices is used in (2.1) and 
throughout this paper. Equation (2.1) holds if Iv - v0] ~ vo. is easily 
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derived if the radiation field is treated semiclassically. The derivation 
with a quantized field is given in Reck et al. (1965). 

Since we have a Boltzmann distribution of momenta in the state 
10), the sum in (2.1) can be replaced by an average: 

F(,, x) = - 4 ~ , 2 ( f i / ~ )  8/2 f exp (-fiqA 2) ~SAj, • u(A)} x 

x ~kd~qA (2.2) 

where fl = h2/2mkT. Equation (2.2) is the same as equation (3.3) of 
Reck et al. (1965), except that  a misprint has been corrected (JV~/V 
instead o f ~  appeared by mistake in the earlier article), and frequency 
rather than energy units are used both for R and/~2. 

Because of the randomness of directions, F is clearly independent 
of the direction of u: 

F(v, u) = F(, ,  ~) (2.3) 

The observed complex refractive index n(,) is found by solving 

n2(~) - 1 = F[~, n(v) u/c] (2.4) 

which normally requires analytic continuation to complex K, i.e., 
leads to absorption. 

In practice, for the problems in which we are interested, F is usually 
only a slowly varying function of K in the region K =~ ~,/c ~ Vo/C. In 
this case, we can define 

F(v) = F(v, v/c) ~ F(~, ~olc) (2.5) 

and then we have to good approximation 

n2(v) - 1 = F(v) (2.6) 

The Hamiltonian with respect to which the resolvent is taken is the 
total Hamiltonian of the system, including the quantized radiation 
field. I t  is a good approximation, however, to use just the Hamiltonian 
for the matter  alone, and this will be done here. Accordingly, our 
Hamiltonian is 

p 2  
+ J/Fin t § h ~  - ~ h2qAe/2m (2.7) 

A 
A 

Here 5~fi, ~ is the internal Hamiltonian with eigenvalues nhv0 (n-- 
number of atoms excited). The last term is a constant added to insure 
tha t  ~ [ 0 }  = 0. ~ represents the interatomic dipole-dipole inter- 
action: 

~ .  } (B~I (2.8) 
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where rAZ is the vector separation between atoms A and B. In 
equation (2.8), IAj>(Bkl operates on the internal state only (trans- 
ferring excitation from B to A), and the rest of the operator involves 
the translational degrees of freedom, t~eferring to (2.1), we see that, 
since the number of excited atoms is conserved under the Hamiltonian 
(2.7), we need only consider states in which one atom is excited. 

We now proceed to the problem of evaluating the necessary 
resolvent matrix elements. 

. Differential Equation for Resolvent; Solution in Classical Path 
Approximation 

Writing out explicitly the integration over the translational degrees 

with 

F = x .  r:t + ~ PD- rl) (3.3) 
D 

(We recall that  all the states that  concern us are eigenfunctions of 
~ n ~  with eigenvalue h,0.) ~( , )  is a matrix in the internal states which 
is a function of the positions of the atoms. Evidently, from the defini- 
tion of ~ ,  

(cO+2mmh ~l) V1)2 + ~ pD22m~ - -  ~f') [exp(if)~(~)]=exp(iI~) (3.4) 

We now combine (3.3) and (3.4), carry out the indicated differentia- 
tions in (3.4), and cancel a factor exp (iF). The result is 

c o - - x . v ~ + ~  + i E  + VD 2 -  ~ = 1  
/9 m ~ D 

(3.5) 
where vv = pD/m is the velocity of atom D. 

Equation (3.5) is the fundamental differential equation which we 

of freedom in the matrix element for R, we can write 

1 

where 

~(~)=exp(-ir) ~+~-5, v"~+~ ps~-f2m~ exp(ir) (3.2) 
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shall use to approximately determine d ,  and through it the desired 
matrix elements of R. 

The notation up to this point has been arranged in such a way as 
to facilitate the passage to the classical limit for the translational 
degrees of freedom in a way which is meaningful for our problem. 
Ultimately, we want to calculate the refractive index at a given 
frequency (not given photon energy) for a gas with a given momentum 
(not wave number) distribution. Therefore, as we let h approach zero, 
we want o~, K, and all the PD to remain constant. Also, to get the right 
answer for the effect of interatomic interaction on the line shape, we 
want this interaction, expres sed  i n  f r e q u e n c y  u n i t s ,  i.e., SF, to remain 
constant as h approaches zero. I f  we held constant the interaction in 
energy units, then the line shape as a function of frequency would 
become infinitely broad, and our result would not correspond to the 
true physical situation. The reader will observe that  with our notation 
all these requirements are satisfied if we simply let h ' approach zero 
formally in equation (3.5). There is no need to think about these 
matters any more, the notation will do that  for us. 

We now develop an expansion of (3.5) near the classical limit. 
First, for convenience, define 

Now expand d as 

A = w - -  x .  v A  ( 3 . 6 )  

d =d o+ hdi+"" 

Combining (3.5), (3.6), and (3.7), we find 

( 2 + i F~ v~. VD -- Of) d0  = 1 
J0 

~+iZv~.%-~ all=- + ix .V~+~ %2d0 

(3.7) 

(3.8) 

(3.9) 

etc. 
Equation (3.8) corresponds to the 'classical path approximation,' 

while (3.9) determines the lowest-order correction to it. For the 
present (until Section 8), we confine our attention to (3.8). 

The solution of (3.8) is facilitated if we introduce new coordinates 
in the 3N-dimensional configuration space. Let one of the new 
coordinates be 

-r = VD 2 ~ Vl). rD (3.10) 
D 
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The definition of the other ( 3 N -  1) coordinates is arbitrary, except 
that  they should be orthogonal to T, and to each other. Thus, let a 
typical one be 

= ~D (X~D'rD (3.11) 

such that  
OLqD. V D ~ 0 

D 

~ {~D.a~fD=O, ~ "  (3.12) 

In this coordinate system, (3.8) becomes 

[A+ i ~ -  ~ ( , ,  ~)]~0(~, ~) = 1 (3.13) 

The solution of (3.13) may be expressed in terms of the quantity 
Uv(r]ro) , defined by the conditions 

Uv(v01Vo) = 1 (3.14) 
a 

i ~ v~(~]%) = ~(~, ~) v~(~l~o) (3.15) 

U v is seen to be simply the time-displacement operator under the 
interaction h ~  when the system moves from the configuration 
(7, To) to (V, r). I t  is given formally by 

[" ] U~(,[,0) = 3- exp - i  f SP(~', ~) d, '  (3.16) 
~'0 

where 3-  denotes time ordering. Clearly, 

Vv(T]~0 ) = Uv(Tlrl)U~(~l]Zo) (3.17) 

for any ~1, and U v is unitary if ~ is Hermitian (which it is) : 

y,+(~]~o) = v~l(~]~o)= u~(~ol~) (3.1s) 

We now seek a solution of (3.13) of the form 

~o(~, v) = u,(~[~o)p(~, v) exp (iA~) (3.19) 

Substituting (3.19) into (3.13), one finds 

Lu.~ J 
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a solution of which may be found using (3.18): 

1 
f U~(r0]~') exp (-iA~')dr' (3.21) p(r, 7) = 

- - 0 9  

Now, using (3.17), (3.19) and (3.21), we find 
T j. I U~(r[~-') exp [iA(r - ~-')] dr' (3.22) d0( r ,  7) = 

- - c O  

U~(~']r t) exp(i~t)dt (3.23) 
1 

J 
0 

where t = ~ -  T'. Note that  U, ~ ,  p are all matrices, so the correct 
order of factors is important in equations (3.18-3.23). 

In the original coordinate system, (3.23) becomes 
o O  

( U(rIr - vt) exp (iAt)dt (3.24) 1 d0(r) =/- 
I /  

0 

The U operator in (3.24) is just the time-displacement operator for 
the internal state8 only for a process in which the system is translated 
rigidly with constant velocity v (vD for each atom D) from an initial 
configuration ( r -  vt) to a final configuration (r), while being acted 
upon by the interaction t V .  In retrospect, the result is not surprising: 
The resolvent is well known to be related by a Laplace transform to 
the time-displacement operator, as in (3.24), and in the classical path 
approximation the operators for the translational coordinates are 
replaced by c-number functions of the time. Note that  the formalism 
requires that  all the velocities be treated as constant. I t  would be 
inconsistent in this approximation to t ry  to correct for accelerations 
experienced by the atoms because of the interaction. 

We have neglected an arbitrary constant of integration in (3.21), 
but  it is easily seen that  it is correct to set it equal to zero. In  the 
limit of weak interaction, or of very large A, d0  should approach 
A -I, which it does with this choice of integration constant. 

According to (3.1), (3.7) and (3.24), the matrix element of R0, 
the classical path limit of R, is obtained by averaging a matrix element 
of (3.24) over configuration space : 

(Bj,•215 ~ f ...f <Bjl o(r)lC )d3 r (3.25) 

Equations (3.24) and (3.25) provide us with formal expressions for 
the matrix elements which we need (and many others besides) in 
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classical pa th  approximat ion.  In  order  to get actual  answers, how- 
ever, it  is necessary to  s tudy  fur ther  l imiting cases within the classical 
pa th  approximat ion.  This we proceed to  do in the nex t  section. 

4. Limiting Cases and Approximations 
4.1. The Two-Body Approximation 

In tu i t ive ly ,  this approximat ion  means t ha t  interact ions or collisions 
be tween different pairs of  particles are t r ea t ed  as independent .  
)/[ore formally,  it  has been expressed (Fano, 1963; Reck  et al., 1965) 
as keeping the linear t e rm in an expansion of the  l inewidth in powers 
of the  densi ty.  Actually,  these two s ta tements  of the approximat ion  
are not  quite equivalent  in all cases (as we shall see presently) ,  bu t  
t h e y  are equivalent  in the  limiting cases which we shall be s tudying 
in mos t  detail. We use the  former  s ta tement ,  and now proceed to 
formula te  it  more precisely. 

I t  is clear f rom equa t ion  (2.1) t h a t  the on]y ma t r ix  elements of R 
t h a t  we need to  consider are those which are diagonal with respect  to 
the  exci ted a tom (i.e., (AiIRIAj} bu t  not  (AdRIB~)). Now consider 
the  deve lopment  of the  opera tor  U in (3.25) as the  gas goes from the 
initial configuration (r - vt) to the final one (r). The ma t r ix  elements 
t ha t  we need are those represent ing processes in which the  exci ta t ion 
is init ially on a tom A, and is again on A at  the  end of the process. 
I f  the  gas is di lute enough, one m a y  assume th a t  no more t h an  one 
a tom is ve ry  close to A at  any  given time, so t h a t  at  each t ime the  
deve lopment  of U is domina ted  by  the in teract ion of  A with the a tom 
closest to it a t  the  time. Thus,  the U opera tor  becomes a p roduc t  of  
par t ia l  U operators  represent ing the in terac t ion  of  A with all those 
other  a toms which pass close to it, ordered chronologically. Moreover,  
if  one excludes from considerat ion processes in which the exci ta t ion 
is t ransfer red  from A to some other  a tom B and subsequent ly  carried 
back to A by  a th i rd  atom, only tha t  pa r t  of each part ial  U opera tor  
which leaves the  exci ta t ion on A need be kept .  Fur the rmore ,  when 
one averages over  directions of mot ion  of the  colliding atoms (as must  
be done eventual ly) ,  each par t ia l  U opera tor  (as well as the  full one) 
becomes a scalar as far  as polar izat ion direct ion is concerned;  this 
causes t he m all to commute,  so the  t ime ordering between the par t ia l  
U operators  need not  be kep t  t rack  of.~ As for the  atoms which never  

t Strictly speaking, there is still a preferred direction, namely that of v~. 
Since it is the same (after averaging) for all the incident atoms, this does not 
change the conclusion that the averaged partial U operators commute. We will 
ignore this effect, since it plays no role in the limiting eases which are our prime 
concern. 
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pass close to A, they contribute practically nothing anyway, so it 
does no harm to include them in the same way as the others. These 
ideas may  be expressed mathematical ly by writing 

(Ai] U(rlr - vt)lA i} = 8ij 2 ~  U~(r~D, v~D, t) (4.1.1) 

U~(r~l), VAD, t) = �89 UAn(rAD, VAD, t)]Ak} (4.1.2) 

with 

U A D ( r A D  , VAD , t) = J -  exp ~(--i f0 ~A ' [ r i~ )  - vAjo(t -- r)] dr (4.1.3) 

r represents the terms coupling A with D in (2.8). We note tha t  
all the Up are real, since only the even terms in the expansion of the 
exponential in (4.1.3) are diagonal. Now, combining (3.1), (3.24), 
(3.25) and (4.1.1), we find 

(A~,x(A)[Ro[As, x ( A ) } = S i s #  ... daXr~ ]-[ UD(rAD, VAD, t)• 
JO C A 

0 

• exp (i)~t) dt = 8ijRo (4.1.4) 

The integration over r A gives a factor V. We also note tha t  if r~D is 
large enough (i.e., for most of the volume), U~ is very nearly unity. 
Therefore, define 

f (1 -- U~) dSrAD U(V,~D, t) (4.1.5) 

Then, from (4.1.4), (4.1.5), we find 
o0 

I f I ~ [  U(V'4D't!] exp(i~t)dt (4.1.6) R0 = 7 1 V 
O 2) =/= A 

In  the limit as N, V -~ 0% (4.1.6) becomes 
oO 

1 f exp [i~t - ~ ( t )  dt (4.1.7) Ro = ~- 
0 

where 
1 

~ ( t ) - N -  1 ~ U(VAD, t) 
1 ) r  

is the average of u over velocities. Equat ion (4.1.7) represents the 
two-body approximation in its most general form (commensurate 
with the classical pa th  approximation). 
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I t  will be helpful to s tudy the properties o fu  briefly by  dimensionless 
analysis. Suppose we suppress the subscript (AD) in (4.1.3), choose 
our z-axis in the direction of v, and substitute ~ -- vz. We find 

[/ I i Y/~(x,y,z - vt + ~)d~ (4.1.8) U(r, v, t) = Y e x p  - v  
0 

In equation (4.1.8), the interaction :~- is proportional to /z 2, and 
appears divided by  v. The only other parameters appearing are x, 
y, z, and vt, of which the first three disappear when we integrate to 
find u. We conclude that  u depends on v, t as 

u(v, t) = u(/~2 /v, vt) (4.1.9) 

Of the quantities appearing in (4.1.9), ~Z/v has the dimensions of an 
area, vt is a length, and u must be a volume. I t  follows on dimensional 
grounds that  u can be written as 

u(v, t) = i~ 2 t f  (tz 2/v~ t 2) (4.1.10) 

where f is some dimensionless function of a dimensionless variable. 
Equation (4.1.10) will be useful to us in later sections. 

We notice from (4.1.10) that  ~(t) may, in general, be quite a com- 
plicated function of t, causing R 0 to be a complicated function of .jz 
when the integration in (4.1.7) is carried out. This is the basis for the 
statement made at the outset of this section, that  the two-body 
approximation as formulated here is not always equivalent to 
expanding in ~ and keeping the linear term. Corrections to the 
two-body approximation will be discussed in Section 7. 

4.2. Static Approx imat ion  

I f  vt is sufficiently small, one may consider ~ to be constant all 
along the path of integration in (3.16). In that  case, 

U(r[ r - vt) = exp [-i$/~(r)t] (4.2.1) 

Combining (3.24) and (4.2.1), we find 

~ o ( r )  = [ ~  - Yr(r)] -1 (4.2.2) 

The integration in (3.25) is now just an average, so 

(Bj ,  ~<(A)[Ro]Ck, K(A)) = (Bj.[ (h - -  ~')-l]Ck) (4.2.3) 

The validity criterion for (4.2.2) may be written symbolically as 

vtlV(In~')[ ~ 1 (4.2.4) 
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In order to use (4.2.1) in (3.24) to get (4.2.2), it must be assumed 
that  (4.2.4) holds for all t which contribute appreciably to the integral 
in (3.24), i.e., for all t ~< h -1. Accordingly, the validity criterion for 
(4.2.2), (4.2.3)is 

vA-I [V( inY/ ' ) [  < I (4.2.5)  

I t  is seen that  the static approximation is always valid on the far 
wings of the line, and always breaks down near the center. 

4.3. Static Two-Body Approximation 
The approximations of Sections 4.1 and 4.2 may be combined by 

making the static approximation (4.2.1) in (4.1.2) and (4.1.3). The 
result is 

U~D = exp [--iY/~(rAD) t] (4.3.1) 

Combining (4.1.2), (4.1.5) and (4.3.1), we find 

u = f {1 - �89 [-iV(r)tJ[As}}d3r (4.3.2) 

In the language of equation (4.].10), the assumption that  vt is 
small means that  the argument o f f  in (4.1.10) goes to infinity. Thus, 
if we make the definition (anticipating the existence of the limit, to 
be verified in the next section): 

q7 2 
lim f(x) -- ~-k s (4.3.3) 

X----~ cO 

then we find from (4.1.7), (4.1.10) and (4.3.3) that  

~2 \-1 

In this approximation, therefore, the pressure-broadened line is 
Lorentzian, becoming a Voigt profile (convolution of Lorentzian with 
Gaussian) when the average of equation (2.2) is performed with the 
aid of (3.6). The parameter k s (s = static) has been defined so as to 
coincide with the broadening parameter k used by Kuhn & Vaughan 
(1964), and Vaughan (1966). 

The validity criteria for this approximation will be discussed 
jointly with those of its opposite, the two-body impact approxima- 
tion, at the end of Section 4.4. 

4.4. Two-Body Impact Approximation 
Here we consider the opposite limit to (4.3.3), in which the argument 

o f f  in (4.1. ] 0) goes to zero; in other words, v is considered to be very 
large. 
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NOW, if l is some measure of the distance over which U changes 
appreciably  as a funct ion of z in (4.1.8), we see tha t  U assumes the 
following limiting forms: 

U(r, v, t) = 1, (z - vt) >> l 

= 1 , z  ~ - l  

= Sf(z, y, v), z >> l, (z -- vt) ~ --l  (4.4.1) 

Here  5 p is the scattering matrix,  defined b y  

I f  vt  >> l, then we will be in error only for a negligibly small fraction 
of  the to ta l  volume if we replace the  >> and ~ in (4.4.1) by  > and < .  
I f  we do this, (4.4.1) gives us U for the  entire volume, and u can easily 
be eva lua ted  in terms of ~9C I f  we define 

~9~ 1 + A  

then we find from (4.1.5) and (4.4.1): 

~(v,  t) = -v t  f ~<AjlAI/j> dx dy (4.4.3) 

But  it is easily shown (Ali & Griem, 1965) from the uni tar i ty  of 5 p 
tha t  the  integral in (4.4.3) is just  -�89 where ~ is the average total  
cross-section. I t  follows that ,  in this approximation,  

O" 
u(v,  t) = vt 

In  the  language of (4.1.10), we can define 

f(0) =~  2 ~-Tr k~ 

Now, from (4.1.7), (4.1.10), (4.4.4) and (4.4.5), we find 

(4.4.4) 

(4.4.5) 

and 

cr = 1r 2 ki lx2/v (4.4.6) 

R o = ( X  + i J f f  2 v )  -1  (4.4.7) 

The form of (4.4.6) could, of course, have been derived on purely  
dimensional grounds. 
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We notice that  (4.4.7) combined with (4.4.6) is the same as (4.3.4), 
except that  k~ appears instead of ]c~.T 

As for validity criteria, we see from (4.1.10) and (4.3.3) that  the 
static approximation (given the two-body approximation) holds for 
U if 

or, referring to (4.4.6), if 

(~ 

(vt) 2 >> 1, vt ~ ~ /~  (4.4.8) 

Conversely, the impact result holds if 

vt >> ~r (4.4.9) 

so we see that  ~/a plays the role o f / i n  (4.4.1), which is not surprising. 
To get the criterion in terms of frequency, we substitute t ~ 2 -1 in 
(4.4.9), and find 

v~ -1 >> v~ (4.4.10) 

I f  (4.4.10) is to hold for A of the order of the linewidth, we must have, 
according to (4.4.7), 

JVav ~ v/%/~ (4.4.11) 

which is just the familiar requirement (Baranger, 1958) that  the rate 
of collisions must be much less than the reciprocal lifetime of a 
collision. When this holds, the impact approximation may be used 
for the most important part  of the line, namely from the center out 
to several times the width. I t  is never correct to use it for the entire 
line. 

5. Closed Form Solution: Static Two-Body Approximation 

The solution for this case can be found by  the methods of Reck 
et al. (1965), but  we use another method, based on the work of the 
previous section. 

According to (4.3.1), and omitting the subscript (AD) for simplicity, 
we must  evaluate 

exp [-iY/~(r) t] 

where Y/(r) is given by  the terms in (2.8) involving a particular pair, 
say A and B. 

t The fact that v drops out of the limiting expressions for u justifies our neg]ecg 
of the v-dependence of the partial U operators mentioned in the footnote to 
page 327. 
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NOW it is convenient to define 

#~(r) = ~-~ (81j-  3 ~ ) ( ] A i }  (AjI+ IBi} <Bjl) 

~ / =  ]Ak} <Bk] + ]Bk} (A~[ (5.1) 

in terms of which it is easily seen tha t  

r = r ~/ 

In  this representation of $/', the excitation transfer is contained in ~/, 
while the dependence on r, and on polarization, is represented by 
r We now have 

exp [-iSP(r)t] = cos r t -- i~/sin r t (5.2) 

To evaluate the trace appearing in (4.3.2), we choose the z-axis in the 
direction of r. In  this coordinate system, 

2 2 
< AzleXp (-i  $/~t) l Az) = cos ~a- t 

<A v[exp ( - i~ t )  lAv} = (A,lexp ( - i~t)  lA,} = cos ~ t 

so equation (4.3.2) becomes 

1 /,2 

=4~r 1 - ~ c o s ~ - t §  t r 2dr 
0 

8 2 =~Tr /~2t (5.3) 

The integration is conveniently done by making the change of 
variables y = 1,2/r a. 

Comparing equations (4.1.10), (4.3.3), (4.3.4) and (5.3), we see tha t  

]cs = 16/9 (5.4) 

This completes the solution for the static two-body case. The result 
is a Lorentzian line (Voigt profile after velocity averaging) described 
by (4.3.4) with the parameter/c~ given by (5.4). 

6. Closed Form Solution: Two-Body Impact Approximation 
6.1. Preliminaries: Classical Path Versus Partial- Wave Method 

In  the impact  approximation, the calculation of the line shape 
reduces to tha t  of finding the average total scattering cross~section, 

2 2  
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Because of the classical path approximation, only the c]assicM limit 
of this cross-section need be considered. Up to now, the theory has 
been developed in terms of the scattering matrix given by  (4.4.2). 
However, a closed form solution is most easily obtained using a 
partial-wave expansion with passage to the classical limit. For 
purposes of orientation, we present in this section some considera- 
tions on the relation between the two methods. Most of this material 
is not new (Landau & Lifshitz, 1965) ; nevertheless, it seems advisable 
to review it from the point of view of our particular problem, especially 
since the partial wave method seems to be little used in line shape 
theory up to now. 

Consider the two-body scattering problem (with internal degrees 
of freedom permitted), in the center-of-mass system, with the incident 
particle having momentum 20 directed along the z-axis, and the 
interaction being represented by  h$/~. The equation satisfied by  the 
wave function (in general a vector in the space of the internal co- 
ordinates) is 

192 

where m is now the reduced mass. I f  we substitute 

r = x exp (@z/h) 

we find 

,x=0 
or to lowest order in h 

8 
i v ~ x  = ~x 

Now if we write 

x(x, y, z) = U~(Z[Zo) x(x, y, Zo) 

then we find 

Uxu(ZlZo) = J - e x p  --v "//'(x, y, z') dz' (6.1.2) 

The scattering is given by letting the arguments of U go to plus and 
minus infinity, i.e., by  

5r~, = U~(oo [-oo) 
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which is evidently the same as (4.4.2). I t  is evident  t h a t  the cross- 
section is given by  

where the integral goes over some surface at  infinity. This is usually 
t aken  to be a sphere, bu t  (since there is no backward scattering in 
this limit) m a y  equally well be a plane at  positive infinity. (Recall 
t ha t  the interact ion in energy units is infinitesimally small, so t ha t  
all scattering is through very  small angles; thus,  there is really no 
difference between sphere and plane.) The sum is over internal states. 
Now if  the initial internal  state is denoted by o, then  

and  we have 

Because 

(6.1.3) 

I~jol2 = 1 d 

(unitarity),  we have 

2 R e ( ~ -  ~oo)= Z ] ~ o -  GI 2 
J 

from which follows the relation between cross-section and diagonal 
element of A used previously to get equation (4.4.4). 

To see the connection with the partial-wave method,  consider the 
special case where there are no internal  degrees of freedom, and we 
have spherical symmet ry :  yF = F(r). Then 5 p is a function only of 
the impact  parameter  b = (x 2 + y2)~I2, and can be expressed as 

~/ -~-  ~ ) ]  (6.1.4) 

The factor of 2 appears in the second expression because the pa th  is 
t raversed twice in r, once coming in and once going out. 

I f  we were doing the same problem by  partial  waves, we would 
expand  

r = Z Pl(cos 0) xz(r) 



336 c. ALDEN MEAD 

and arrive at the equat ion  

- ~ X { ' +  2mr2 Xl+-F(r)xl = Xt (6.1.5) 

In order to approach the classical limit by means of the W K B  approxi- 
mation, we first set hl = L (the classical angular momentum, which is 
to be held constant), and make the substitution 

xl(r) = e x p  [i;~(r)/h] 

Equation (6.1.5) would then take the form 

L 2 ~L p2 
(~')9-ih~" + -fi + ~-~ + 2mhF = (6.1.6) 

The next step is to expand )~ in powers of h: 

=20 +h21 + " "  

In  zero order, one has 
()to,)e = p2 _ L2/r 2 

~0(r) = f p~/[1 - b2/(r')2]dr ' + C (6.1.7) 
b 

in which the integration constant C is determined by  the boundary 
conditions at the turning point b = p/L,  which is, of course, the same 
as the classical impact parameter for momentum p and angular 
momentum L. 

Taking the terms of first order in h in (6.1.6), we find 

2~o'21' -- i,~o" + L/r 2 + 2mF = 0 (6.1.8) 

From (6.1.7) and (6.1.8), we obtain 

r2/~.2~-l/2f iL2 L 2mF} (6.1.9) 
~1' = 1(p2 _ ~ 1- , ( r 2 V ( p 2 _  L2/r.2) r2 

The phase shift is the difference between the phase at infinity and 
what  it would be if there were no interaction. Mathematically speak- 
ing, to this approximation, 

= R e  [ ~ ( ~ )  - ~ ( ~ ) [ F  - -  0 ]  

m F d r  1 rFdr (6.1.10) 
= - - 3  V ( ~ Z L 2 / r 2 ) -  v V(r  2 - b  2) 

b b 
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Effects due to changes in the boundary conditions at b are easily seen 
to be of a higher order of magnitude, so (6.1.10) gives us the phase 
shift to lowest order in h. 

With the aid of the correspondence L = hl =- bp = bhl~, we see from 
(6.1.4) and (6.1.10) that  

5~(b) = exp (2i~z) 

with the cross-section being given by 

= 2~r ; blex p (2i3~) - 1]2db 
0 

= ~ 21sin2~zdl (6.1.11) 

o 

This differs from the usual expression 

~ = ~ .  (2/+ 1) sin2 Sl 

only in that  the sum is replaced by an integral, and 1 is neglected 
compared with 1. 

In  partial-wave language, then, the classical path approximation 
corresponds to taking the lowest order W K B  approximation for the 
phase shift, and replacing the usual sum by an integral. The relation 
between impact parameter and angular momentum is just the 
classical one, h 1 = L = bp, and the scattering matrix is related to the 
phase shift by 

5f(b) = exp (2i~l) (6.1.12) 

Equation (6.1.12) expresses the fact, familiar in partial-wave theory, 
that  the ratio of the outgoing amplitude for a given angular momen- 
turn to what it would be in the absence of interaction is just exp (2i3z). 

The problem which we have to solve is complicated by the presence 
of internal degrees of freedom, but the same general principles apply. 
We now proceed to set up this problem and solve it. 

6.2. Setting Up the Problem 

We have two kinds of internal degrees of freedom to deal with: 
the one which tells us which atom is excited, and the one designating 
polarization. The former is removed quite easily by taking symmetric 
and antisymmetric linear combinations. I f  we define 

I J• = V�89 • IBj}) (6.2.1) 
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then 
~2 

(6.2.2) 

and there are no matrix elements connecting (+) with (-) states. 
They can therefore be treated separately. We consider only the 
symmetric (+) combination for the present. The results for the (-) 
are obviously the same, with/x 2 being replaced by _/~2. 

Insofar as this is possible, we want  to expand our wave function in 
eigenfunctions of conserved quantities, which can then be treated 
separately. We have already done this in (6.2.1), choosing eigen- 
functions of ~/, defined in (5.1). Normally, in partial wave theory, 
one expands in eigenfunctions of orbital angular momentum,  but  tha t  
will not quite do here, since the interaction couples the orbital angular 
momen tum to the internal angular momentum S, which behaves 
formally like a spin of one (because we deal with a P state). The total 
angular momen tum J,  however, is conserved, along with its com- 
ponent  in the z-direction (chosen parallel to the incident velocity). 
Accordingly, it is better  to choose our internal states as eigenfunctions 
of S~ with eigenvalues mz = 0, 4-1, than  as states with a definite 
direction of polarization. We then combine these with orbital states 
to build eigenfunctions of j2, Jr, with eigenvalues, J ( J  + 1) and m j .  

In  terms of the internal angular momen tum S, the interaction 
(6.2.2) takes the form 

$/~ = ~ [ 3  (r'S)2 r~ 2] (6.2.3) 

Our incident states are plane waves multiplied by internal states; 
they therefore have mj  ~-O, 4-1, since the z-component of orbital 
angular momen tum is zero. Since mj  is conserved, therefore, we need 
only consider states with m j  = 0,  4-1.  

I t  is also useful to have some idea of the magnitudes of angular 
momen tum tha t  we will be most interested in. We know from the 
dimensional analysis tha t  

r ,~ ix2 /v  (6.2.4) 

while we have from the phase shift formula tha t  

a = ~ ~ (2 /§  1)sin28t 

41rh2 f 4~rh2 ~ m---ff~vS 21 sin e 8 z d l  ,,, (6.2.5) 
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where I is some rough maximum I for which the phase shift is appreci- 
able. From (6.2.4) and (6.2.5), we see that the values of l which 
contribute appreciably are those for which 

1 m ~ / v  ~ >~ 1 (6.2.6) 

We see that the I of interest are very large in the classical limit, and 
that what remains constant is L = hl. 

We must now express the eigenfunctions of total angular momen- 
tum in terms of those for orbital and internal angular momentum. 
This is easily done by standard angular momentum theory. We list 
below the expressions for states with definite l, J ,  m j  (denoted by 
I I , J ,mj ) )  in terms of direct products of orbital states with definite 
l, ml (denoted by ]l,m~}) and internal states with definite m s (Ires}). 
Each expression is followed by its limit for large l. The results are as 
follows: 

= / r / + 2  ] d [  l( /§ ]]/,1}i0 ) II'/+ ]'1} 4 I)(2U--~ ~)/[/'~ + ( l§  1)(2/§ 1) 

/r ~(*- ~) ~ I~,o> dl2(z + ~)(2z § ~)] IZ' 2}1-~} I1} 

1 1 + ~  I~, ~>1o} + ~ II, 2>1-1} 

,,/[ ' ]l,,-,>l,>+/r'+x-I ]l,t+ 1,o} = 2(21% :ti 4L2T-~i- jll,o}lo} 

+d[2(2z'+ 1)]l z' l } l - ' }  

~2  1 ll ' 1}[_1> 1 ll,-1}[1) + [l,O}[O} §  

d [  l ( l - 1 ) ]  [l _2}11} If, 1 -t- 1,-1} = 2(2/-t- 1)(l -}- 1) 

d [  ~(I+2) ] -k (21 q- 1)(l § 1) I~,-~}Io} 
/ + 2  

+d[-2(~U~ l il il, ~ 
1 1 li/,_2>ll }4_ I t , -~}lo}+ 1/,o}1-1} 
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lz, z,~>- V21z, o>l~>~ V[z(Z+l)]lZ, l>lO> 
+j[(1-a)(z 

~ -  IZ, O>ll> + ~  lZ,2>l-1 > 

1 1 

iz, Z,_l> = _ j [ ( z - ~ ) ( z +  2!] 2z(z+ ~) Iz,-2>ll> 

IZ,-~>lo>+ ~ IZ, o>l-x> 

+__~ 

z -  1 / [  z~- 1_-I 
IZ, Z-1 ,1>= ~[2(~g q: li] IZ'~ [z, '>lo> 4LZ(2z + a)] 

/I-(Z + 2)(t + a)l 
~ [  2/(2l+1)][/,2>1--1> 

1 1 l1 ' 1>10 > -f- 1 ii ' 2>]-1> ~lZ, o > l l > - ~  

=/r. ]l,l- 1,0> 4/2(21+ 1)] IZ,-i>Jl>- IZ, o>lo> 

/+1  
+ J [2  (~[ 2?- 1)-] [ l, 1 > 1-1 > 

1 1 1 ~ IZ,-~>ll> - ~ IZ, o>1o> + ~ Iz, ~>]-1> 

It, Z-a _,> = j [ ( z +  1)(/+ 2)] 2/(2/TT) ] ]l'-2>ll> 
_ /[_(l--1)(/§ ~(27 ~ ~ x)] [Z,_l>iO > 

1--1 

x lZ _2>ix >_  1 iz _a>lo > + x z~ ~ ~]z,o>l-~ > (6.2.7) 



TttEORY OF RESONANCE PRESSURE :BROADENING 341 

The interact ion #z evidently commutes wi th  the tota l  angular 
momentum,  and therefore will have matr ix  elements only between 
states wi th  the same values of J and mj. For  each J ,  however, there 
are three values of 1 (1 = J ,  J + 1, J - 1), which m a y  be coupled to 
one another.  $/~ also commutes with pari ty,  f rom which i t  follows 
t h a t  even values of l are never coupled to odd values. This means 
t h a t  l = J § 1 m a y  be coupled to J -  1, bu t  1 = J is uncoupled to 
any th ing  else. The matr ix  elements are independent  of mj  because 
of the scalar na ture  of the interaction. Wi th  the aid of (6.2.3) and 
(6.2.7), and some more e lementary angular  momen tum theory,  it  is 
a s t ra ightforward mat te r  to work out  the matr ix  elements of #/ .  
They are : 

(J ,J ,  m l ~ l J ,  J , m  ) = ,2/rs 

, e / J §  1 ,  2 
(J  § 1,J, m]fVlJ + 1,J, m} = - ~  ~ 2 7 - ~ /  z - 2 r - ~  

u ~ V'[J(J + 1)] z -3"--2 
(J  § l 'J 'ml~F~]J-  l ' J ' m }  = Urs 2J § l 2r s 

= - ~ e ( J - 1 ]  N 1 ,2  (6.2.8) 
( J -  1,J, ml~f]J - ] , J , m }  r 8 \2J  § 1] "~ -2r  ~ 

In  the part ial-wave formalism, we decompose the wave funct ion 
into states with definite J, mj  and solve these separately. The resulting 
equations are independent  of m j, which will therefore be suppressed 
in wha t  follows. For  each J, mz, there are three values of  l, two of 
which (l = J  • 1) are coupled to one another. We denote scattering 
states for each J ,  l by  a bar. 

For  l = J ,  we can write 

I ~ J }  = r -1 ~(r)[J, J }  (6.2.9) 

We then  find, using (6.2.8), (6.2.9), t h a t  ~ obeys 

h + ~ J ( J +  1) ~2 p2 
2m ~" 2m ~ § r-S~ = 2~mnh f~ (6.2.10) 

For  l = J ~= 1, we mus t  generalize somewhat  to take  the coupling 
into account.  We can write 

IJ + l , J }=r - l {~ ( r ) l J  § l , J }  + ~ ( r ) l J -  l , J ) }  (6.2.11) 

where we will seek a solution for which ~(r) goes to zero at  infinity. 
The equat ion for IJ -- t , J }  will be the same, except t h a t  ~(r) is chosen 
to approach zero. For  the present, we anticipate the existence of such 
solutions, which will be confirmed later on (subsection 6.4). 
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Combining (6.2.8) with (6.2.11), we find 

h ?~(J + 1) (J + 2) / ~ 2 / J +  2~ t,2 ~/[J(J  + 1)] 
2m~" + 2mr 2 ~ - r  ~ [ 2 J +  1] ~:+ 3ra 2 J +  1 

h h J ( J  - 1) 7"§  
2m 2mr ~ ~? -- r-~ ~ + 3 r ~  2 J + l  

p2 

= 2mh ~? 

(6.2.12) 

Equations (6.2.10) and (6.2.12) are exact; we now proceed to solve 
them for the phase shifts near the classical limit. 

6.3. E x p a n s i o n  Near  Classical L i m i t  

1. l = J :  
Equation (6.2.10) is the same as (6.1.5), with F(r)  = ~2/r~. We can 

evaluate the classical limit phase shift directly from (6.1.10) : 

oo 

~2 f dr ~2 ~2p2 
~(~=J) = -- v r2~r - -  b 2) - vb 2 vhPJ  2 

b 

(6.3.1) 

We note that,  as expected, the only J that  contribute appreciably 
to the cross-section are those satisfying (6.2.6). 

2. l = J •  
The t reatment  of the coupled equations (6.2.12) will be facilitated 

if it is transformed somewhat. We make the following changes : 
(a) The impact parameter b = ~J /p  is introduced (the difference 

between J and J • 1 is negligible here), and the new valiable p = r/b 
is substituted. 

(b) Certain terms which are of higher order in h and cannot affect 
the results are dropped. Thus, the limiting form of (6.2.8) is used, 
and approximations such as ( J §  1 ) ( J §  2 ) ~ j p §  3J are made. 
I t  is easily verified that  the omitted terms come in at higher order 
in h than we will need. 

(c) We substitute 

(6.3.2) 
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With all these changes, (6.2.12) and (6.3.2) become 

3hp mht~ 2 3mht ~2. _ 2 
@)2b 2 ih. ,, F ~ bp 2 b~ p~ § b-~T- r -19 (6.3.3) 

�9 3mht~ (A,)2 ih A,, ~ 2~_h2 A, 4 ' h 2  p2 ~Pp2r mht~24 + b~ p3 
52 w - - ~  -b2W - F ~ 4 -  -b3p8 

= p 2  4 (6.3.4) 

Differentiations are now with respect  to the new variable p. We will 
seek a solution for which 4 goes to zero as p goes to infinity. 

We now make the expansion in powers of h: 

h = '~o -]- hA1 + "'" 

4 = r + hr + . . .  

To zero order in h, (6.3.3) becomes 

(Ao,)2 p2 
b 2 + ~ =p2,  ~o' = bpV(~  - 1 / / )  (6.3.~) 

Equa t ion  (6.3.4) in zero order becomes 

(Ao,)2 p2 
b~ 40 + ~ 4o = F 40 

which is automat ica l ly  satisfied if (6.3.5) is satisfied. 
The terms first order in h in (6.3.4) give the  equat ion 

2Ao' AI' A0" 31o mt~ 2 3mt~ 2 
b2 i~b~§ 2 b~p3 + b ~ T 4 o  = 0 (6.3.6) 

As in Section 6.1, the phase shift is given by :  

= Re [;h(o~) - ~ ( ~ ) [ ~ 2  = o] 

so we have, from (6.3.5) and (6.3.6), 

cO 

3(l=J § ] ) -  mt~ ( ( 1 - 3 1 ~ e r  t~ 2 
�9 262p j -p~-~/~i -- li = 2vb2 (1 -- 3Q) (6.3.7) 

1 

where 
09 

( r dp 
Q = ~ e  ) p2~-Tp~ _- l) (6.3.s) 

1 



344 c. ALDEN MEAD 

To get an equat ion satisfied b y  r we must  consider the  first-order 
terms in (6.3.4). These give the equat ion 

;t~) 2~o' ;~1' - i 2i .  , 
( ~ r + ~ r - b~ ~o" r - b~ ~o r 

p2 
5 r  0 _ m/x2 �9 3raft ~ 2 

b ~  r + b - ~  = p r  (6.3.9) 

The terms in (6.3.9) containing r drop out  because of  (6.3.5). Terms 
involving 20, A1 m a y  be el iminated b y  subst i tut ing (6.3.5), (6.3.6). 
When  this is done, one finds the  following nonlinear equat ion  for r 

3mff2 . 2 4/9 2ip 3mff 2 
b-Tp~-r -- ~-p~r V(p2- -  1 ) r 2 4 7  b~pff = 0  (6.3.10) 

Because of  its nonlinear character,  we will not  be able to find the 
solution to (6.3.10). We will, however,  be able to discover enough 
propert ies  of  the  solution to enable us to evaluate  Q, which is all we 
need. 

6.4. Evaluation of Q 

In  (6.3.10), let us make the change of variables y = (p2 __ 1)1]2, 
and the subst i tu t ion 

r = ,ox 

With  these changes, (6.3.10) becomes 
1 

X 2 + F ( 2 + i y ) x §  ' = 0  (6.4.1) 
y2 +  1 

w h e r e  

F =  2pb2 
3m/~ 2 

In  terms of  the  new variables, (6.3.8) becomes 

oo 

X(y)dy (6.4.2) Q = Re  j ~ T 1  
o 

Since we want  r to vanish at  infinity, it is necessary to examine 
(6.4.1) for large values of y, to see whether  this is possible. For  large y, 

a - n  therefore, we t ry  a solution X = Y , and take  only the leading 
contr ibutions from each te rm in (6.4.1). We find 

a 2 y--2n § iFay--~+l _ inFay-n+l _ y-2 = 0 
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which has to be satisfied only to the lowest negative power of y 

appearing in it. We see that this can be satisfied for n = 3 or 1. (If 

n = I, the two middle terms are the leading ones; if n = 3, all the 

terms except the first must be kept.) We must choose n = 3, since we 
want r ~ px to vanish at infinity. With this choice, requiring the 
term in y-Z in (6.4.1) to vanish leads to the result 

a = i / 2 ;  

so the asymptotic behavior of X is given by  

i 
X ~ 2T,y--~, Y --> ~ (6.4.3) 

for the solution which is acceptable to us. 
Equation (6.4.1) is of the l~iccati type.~ I t  may be transformed by  

means of the substitution 

X(Y) = iF(y  2 + 1) (6.4.4 / 

By inserting (6.4.4) into (6.4.1) and performing some simple manipula- 
tions, we find 

3y - 2i . ,  1 
f"  + ~ ~ f ]  4 F2(y2 + l ) a f =  0 (6.4.5) 

Insertion of (6.4.4) into (6.4.2) gives the result 

GO t 

Q =  Re / / "  f f d y = - F [ I m l n f ] o  ~176 
o 

(6.4.6) 

Thus, we only need to find the change in phase of f between zero 
and infinity. 

Equation (6.4.5) has two linearly independent solutions. We must 
choose the one which leads to the correct asymptotic behavior for X. 
Substituting f z y  ~ into (6.4.6), and taking the leading terms for 
large y, we find n = 0, -2 .  According to (6.4.3) and (6.4.4), we should 
hayer ' I f  ~ y-5 for large y, so clearly n = - 2  is unacceptable. Choosing 
n = 0, we can now calculate the next term. Write 

f ~- 1 + ay-" + . . .  

t See, for example, Murphy, G. M. (1960). Ordinary Differential Equations 
and their Solutions, pp. 15-20. D. Van :Nostrand, ]Princeton, :N.J. 
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One then substitutes this into (6.4.5) and takes leading terms, with 
the result 

l - 6  v(v-- 2)ay -~-~ § = 0 

One solution i s ,  = 2, with the last term dropping out in this case. 
This is easily seen not to give the right asymptotic behavior. The 
other solution is 

, = 4, a = - (8F2)  -1 

which is the acceptable one. For large y, therefore, we have 

1 
f =  1 K ~ y  -4 + . . .  (6.4.7) 

Substituting (6.4.7) into (6.4.4), one finds that  (6.4.3) is indeed 
satisfied asymptotically, f is, of course, determined only up to a 
multiplicative constant, which drops out when X is evaluated by  
(6.4.4). We have fixed this for convenience by  requiring the constant 
term in the asymptotic expansion to be unity. 

Combining (6.4.7) with (6.4.6), we find 

Q = _P[Im lnf(0)] (6.4.8) 

wheref  must now be the solution which satisfies (6.4.7) asymptotically. 
We now notice that  if f (y) is a solution of (6.4.5), so is f* ( -y ) .  Also, 

if f (y), g(y) are any two solutions, one easily deduces the Wronskian 
equation 

w' i2i-  = w 

where W = gf' - f g ' .  The solution is 

K 
W = (y  _ i)1/2 (y  _[_ i)5/2 (6.4.9) 

where K is a constant. Now, let f(y) be the solution satisfying (6.4.7), 
g(y) = f * ( - y ) .  From (6.4.8), it is easily seen that  for large y, 
W = 0(y-~). According to (6.4.9), however, W must behave asympto- 
tically as Ky -3. I t  follows that  K = 0, W = 0 everywhere. 

W = 0 implies that  f* ( -y )  is just a constant times f(y),  and it is 
clear from (6.4.7) that  this constant must be unity. We conclude that  

f * ( - y )  = f ( y )  (6.4.10) 

(It is clear that  the continuation to negative y is permissible, since 
(6.4.5) has no singular points on the real axis.) Also, one sees from 
(6.4.4) that  the solution with f(0) = 0 leads to unacceptable behavior 
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of X at y = 0, and is therefore not of interest. This solution would lead 
to infinite cross-sections.~ 

I t  follows from (6.4.10) and the fact tha t  f(0) # 0 that  I m f  is an 
odd function of y, hence Ira f(0) = 0, Re f(0) # 0. Therefore, Imlnf (0)  
= nTr, where n is some integer, positive or negative. Hence, from 
(6.4.8), 

O = r n ~  (6.4.11) 

Combining (6.4.11) with (6.3.7) and (6.4.1), we find 

~2 
8 ( l = J  + 1)= 2 ~ -  nTr (6.4.12) 

All the properties of the phase shift which are of interest (sin28, 
32i8) are independent of n, so we can take n = 0. The calculation for 
1 = J - 1 is exactly similar, and yields the same result. 

The final result, therefore, is just the same as ff we had completely 
ignored the coupling between the different/-values. After the fact, 
this result seems rather reasonable. This method has been shown to 
be equivalent to the classical path method; in tha t  method, the impact 
parameter (or orbital angular momentum) is treated as a fixed c- 
number, and one cannot even express the idea of a transition (real or 
even virtual) in which the value of this c-number changes. The 
coupling between different /-values, therefore, is a concept foreign 
to the idea of the classical path approximation, so its effects should 
be expected to disappear. 

We now have all the phase shifts that  we need. All that  remains is 
to put them together to get the scattering matrix and cross sections. 

6.5. Results : Comparison with Other Theories 

Equations (6.3.1) and (6.4.12) provide us with all the information 
we need to calculate the scattering matrix. The phase shift for 1 = J - 1 
is the same as (6.4.12), and the results for the antisymmetric linear 
combinations are obtained by replacing/,2 with _/~2. 

t The  solut ion wi th  f(0)  = 0 varies  l inearly wi th  y for small  y, so to sat isfy 
(6.4.10) i t  mus t  obey f ( y )  ~ a i y ,  y -+ 0, where a is real. W i t h  this solution, 
(6.4.12) would  become 

8 = 2vb~ - (n  + �89 I t  

which has as a consequence sin28 --~ i, as b -~ co. This would cause the expres- 

sion for the cross-section to diverge. 
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Using (6.1.12), (6.3.1), (6.4.12), we find 

(J, J, m(4-)[ ocf[J, J ,  m(• = exp (:~2i~) 

(J  + 1,J,m(+)]Nf]J + 1 , J , m ( •  1,J,m(+)lN~lJ- 1,J ,m(•  

= exp (• (6.5. l) 

where ~ = ix2/vb 2, b = h J/p, and other matrix elements are zero. 
Matrix elements involving initial states such as I1, 0)[ 1) are obtained 

by  taking the appropriate linear combinations. For example, using 
(6.5.1) and the limiting form of (6.2.7), which is adequate to the order 
of approximation we are considering, we find 

0) ] l (+))  = ~9~189 l +  l, 1(+)) -- 1(+)> 

+�89 t, t - 1,1(+)>} 

= ~ e x p  ff~:)ll, I + I, 1(+))  - g ( ~ )  exp (-2/~)II, l, 1(+))  
+ �89  (i~:)]~, l - 1,1(+)> 

= �89 (i~) + exp (--2i~)] {[1, 0>] 1(+)> + ]l, 2>[--1(+)>} 

etc. States with the excitation localized on A or B are obtained 
by  taking linear combinations of symmetric and antisymmetric states. 

When the matrix elements are calculated for these direct product 
states, it is found that  they never connect states of different l, and 
also that  they depend only on I (or b) and the initial and final values 
of ms. Thus, the amplitude for a transition in which ms changes 
from 1 to - 1  is the same whether one treats ms as going from zero to 
2 or from - 2  to zero. This is necessary to obtain correspondence with 
the classical path method, in which ms does not appear. We can 

therefore suppress all indices except the ones telling which atom is 
excited and the value of m s. The resulting matrix elements are: 

(A, 0] SeIA, 0} = (B, 01 ~ [ B ,  O) = cos 

(2t, 0l Sf[B, 0) = (B,  0INDIA, 0) = i s i n  

(A, 1]5f[A, 1) = (B, I [ ~ ] B ,  1) = ( A , - 1  ]~9~ 

= ( B , - I [ ~ ] B , - 1 )  = cos (~/2)cos (3~/2) 

(A, II5~[A,-1 ) = ( A , - I [ S f ] A ,  1) = (B, I [ # ~  
= ( B , - 1  [ 6rIB, 1) = sin (~/2) sin (3~/2) 

(A,  1] Sf]B, 1) = ( A , - l  l S'~ = (B, lISP]A, 1) 

= ( B , - ~  I 5rl A , - 1 )  = - i  sin (~I2) cos (3~I2) 

(A,  1 [ ~ 1 B , - 1 )  = ( A , - l l S Z I B ,  1) = (B,  1 1 ~ ] A , - 1 )  
= ( B , - l l ~ [ A ,  1) =icos(~/2)sin(3~/2) (6.5.2) 

All others are zero. 



THEOI~Y oF IaESONAI~OE PRESSURE BROADENING 349 

The 5P-matrix assumes a simpler form if we define the polarized 
states 

IA~} = IA, 0} 

lax> = %/(�89 1> + IA,-I>) 
lAy} = %/({)([A,  1} - [ A , - I > )  (6.5.3) 

I t  is seen that  the x-polarization is invariant under reflections through 
planes containing the z-axis, while y changes sign. Thus, the x-direction 
for a particular path may be thought of as pointing directly outward 
along the interatomic radius at the point of closest approach, while 
y is chosen in such a way as to form a right-handed coordinate system 

T A B L E  1. 5Z-matrix e lements  as ob ta ined  b y  different  m e t h o d s  

Element Present work Byron & Foley (1964) 

<A~ I ~IA~> cos 5 1 
<A ~15P IBm} i sin ~ 0 
(A~iS~IAz> cos ~ cos 2~ 
<&l ~[B~> i sin ~ i sin 2~ 
<Ay] 5PlAy> cos 2~ cos 2~ 
<Av 15~ [By} - i  sin 2~ - i  sin 2 

E l e m e n t s  ob ta ined  b y  exchang ing  A and  B are t he  same as those  listed. 
All o thers  are zero. ~ = t~2/vb ~. 

with x and z. The results for this representation are given in Table 1. 
For comparison, we also list the results that  would be obtained using 
the method of Byron & Foley (1964), which consists in neglecting the 
time-ordering in equation (4.4.2). We note that  the two methods give 
the same result for the y-polarization; this is because it is not coupled 
to the other directions (% always being zero), so the interaction 
becomes simply a number, not a matrix, for this polarization, making 
the order of factors irrelevant. 

Cross-sections may be evaluated either by means of the phase shift 
formula or by using the information in Table 1 and the formula 

23 

~j-+k = 2~ ; bl~kj(b ) -- 8kj12d5 
o 
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[compare equation (6.1.3)]. The results are summarized in Table 2. 
We also list the results that  would follow from the method of Byron 
& Foley (1964) and those which were obtained numerically by 
Watanabe (1965a, b). The method of Byron and Foley is seen to give 
the correct result for the average total cross section, but not for the 
individual cross sections. Watanabe's result for the average total 

TABLE 2. Cross-sections calculated by different methods 

Byron & Foley Watanabe 
]c Present work (1964) (1965a, b) 

A~ -+ A~ 1/2 0 t 
Az --> Bz 1/2 0 0"137 
A~ -+ A~ 0 0 0'192 
Az --> -Bx 0 0 0"179 
Ay --> Ay 1 1 
Ay --> By 1 1 1"000 
A~ -*A~ 1/2 1 
Ax --> Bx 1/2 1 0"656 
Ax --> Az 0 0 0.192 
A~ --> B, 0 0 0.178 

Average Total 4/3 4/3 1.44~ 

t Watanabe did not calculate cross-sections for scattering without change 
in internal state. The total average cross section is calculated by assuming that 
it is twice that for excitation transfer. 

For each process, the cross section (r = kTr21t2/v. Cross-sections for initial 
states with B excited are obtained by interchanging A and B. Others are zero 
by all three methods. 

cross section differs by somewhat less than 10%. From equation 
(4.4.6) and Table 2, we conclude tha t  

ki = 4/3 

I t  is perhaps advisable to discuss briefly the probable reasons for 
the discrepancy between Watanabe's results and ours. His method 
consists in expanding the time-ordered exponential (4.4.2) in a power 
series in tL 2, performing the integrations (up to the fiftieth order) 
numerically on a computer, then squaring the resulting 5P-matrix 
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elements and integrating them to obtain the cross sections. A difficulty 
with this method is that  the integral diverges badly at the origin (as 
may be seen by expanding our :;Z-matrix elements in powers of/~2), 
so a somewhat arbitrary cutoff procedure has to be used. The uncer- 
tainty thus introduced is probably sufficient to account for most of 
the discrepancies. I t  still seems rather strange at first glance that  we 
obtain exactly zero cross sections for processes in which the polariza- 
tion changes from x to z or vice versa, while Watanabe obtains non- 
zero results, comparable in magnitude to the cross-sections for other 
processes. I f  one checks back through the calculation, one finds that  
the vanishing of this cross-section is due to the result (6.4.11), which 
embodies the fact that  the phase of the function f, obeying equation 
(6.4.5), changes by an integer times 7r when y goes from zero to infinity. 
I t  is evident from (6.4.5), however, that  the phase o f f  does change in 
this process (e.g., it is not always zero), and that  its detailed behavior 
is likely to be quite complicated. I t  is not too surprising, therefore, 
that  a numerical calculation fails to give the result that  the overall 
phase change is exactly n~r. 

7. Many-Body Corrections 

In  the static limit, it has already been shown (Reek et al., 1965) 
that  the corrections for three-body processes are of order of magnitude 
~/x~/A relative to the two-body terms, with higher-order corrections 
involving successively higher powers of Ji~/x2/)~. Hence, the criterion 
for use of the two-body approximation in this limit is 

A >~ ~ / x  2 (7.1) 

The approximation is always good on the wings of the line, therefore, 
but  never for the center. Since, according to equation (2.2), the line 
shape must be averaged over velocities, the many-body effects will 
fail to be noticeable if 

D >> JV/x 2 (7.2) 

where D is the Doppler width. In  the static limit, therefore, one may 
always use the two-body approximation for the portion of the line 
satisfying (7.1). I f  (7.2) is satisfied, it may be used for the entire line 
without appreciable error. 

We now consider many-body corrections in the impact limit, i.e., 
in the limit where the two-body U operator is given accurately by the 
theory of Section 4.4. We will content ourselves with estimating the 
order of magnitude of these processes, and will therefore ignore 
polarization indices. Equations (4.1.1) and (4.1.2) may be thought of 
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as representing a series of independent collisions, in each of which the 
excitation remains on atom A. In shorthand notation, they say that  

The next higher-order effect is that  due to processes in which the 
excitation is transferred from A to another atom B, from there to C, 
and back to A again. The correction for this effect may be written 

 <AIUIA>= 2 (AIUAB[B)(BIUBe[C)<C[UeAIA)x 
.B, C, Ta A 

• <A] v  IA> (7.a) 

which must, of course, be averaged over configuration space. When 
this average is carried out, the product over D in (7.3) just gives 
exp (-1/2JV'avt) in the impact limit as before. The rest of (7.3), when 
averaged, contains the following factors: 

~2  (from summing over B and C); 
V -2 (normalization for volume average) ; 
avt (twice, from integrating UAB over rB and UBc over r e and using 

the impact limit for each U); 
a/(vt) 2 (solid angle factor from UCA. May be thought of as probability 

that  C, having collided with B, will be 'aimed right' to collide with A 
after travelling a distance ~ yr.). 

Putt ing all this together, we find 

6<AIUIA) ~ ~.2 aU(A[UiA) (7.4) 

This correction will be small compared with the two-body term if 

JV 2 a s ~ i 

But this is immediately seen to be the same as (4.4.11). Thus, the 
criterion for use of the impact limit for the main part  of the line within 
the two-body approximation is the same as that  for neglect of many- 
body processes in this limit. 

To sum up, then, if the classical path approximation is assumed to 
be valid, one may use the static two-body approximation if the 
conditions 

A >> v l V ~  ~ V(v) l~  (7.5) 

are satisfied. The criteria for use of the two-body impact approxima- 
tion are 

A < V(v)/~ 
~4zlx 2 < V(v)/~ (7.6) 
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where v, of course, is always understood to be some appropriate 
average ve]ocity. 

8. Quantum Corrections 

To obtain the lowest-order quantum corrections to the classical 
path approximation, one must solve equation (3.9). We notice that  
the first two terms on the right-hand side of (3.9) are trivial and 
uninteresting: the first is a constant which could be absorbed into ~, 
while the second is simply a correction to VA, and could be included 
in the second term of (3.8). Only the last term is really important, so 
we can find the true quantum correction by  solving 

1 + i  v D . V D - - ~  ~ l=-~mmVV~2~o__ (8.1) 
D 

This is easily solved formally by  the methods of Section 3, equations 
(3.23) and (3.24). The result is 

1 ( ; U ~ ( ' r ] T - t )  E V D 2 U ~ ( T - t f ' r - t - t ' )  ~l(~ ,T)- -  2m~ 
o o 

• exp [i~(t + t')] dtdt' (8.2) 

Since this must eventually be averaged over configuration space, it 
is clear the final result will not be affected if the origin is shifted by  t. 
I f  we do this, and go back to the r representation, we find ibr the 
correction to the resolvent 

2mv~ v d3~Cr U(r + vt]r) ~ V~) 2 U(r[r - vt') 
o o 

• exp [i)~(t + t')] dtdt' (8.3) 

I f  we can make the two-body approximation, then each U is a 
product of independent U,~D operators for the matrix element in 
which we are interested. In this case, each V1) 2 operates only on the 
factor U~D, and (8.3) can be rewritten 

2m VN d ~ r  9~A {U~9(rAD+VA~)tIrAD)VD2X 
o o 

x U~D(rAD]rA9 -- VADt')} C I~, D U,c(r~c + v~ctlrAo 

-- VAC t') exp [iA(t + t')] dt dt' (8.4) 
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In  (8.4) i t  is understood tha t  mat r ix  elements <A]U]A), etc., are to 
be taken,  i.e., (8.4) holds only for these matr ix  elements, not  as an 
operator equation. We will content  ourselves with est imating the 
order of magni tude  of (8.4) in the two limiting cases, static and  impact.  

First ,  we notice t ha t  the product  over C in (8.4), after integrat ion 
over r, behaves just  as in Section 4 and  gives the result 

exp 

where k is either ki or ks, as 
(8.4) as 

R~ = - 1 ~  ( d 8 r 
2m J 

[-�89 + t')J 

the ease m a y  be. Therefore, we can rewrite 

f f U(r + vtlr) V2 U(r[r-  vt') • 
0 0 

• exp [iA(t + t')]dtdt' 

= 1 ~ f dZ r f ; {VU(r + vt]r)}. { V U ( r l r -  vt')} • 
2m 

0 0 

• exp [iA(t + t')Jdtdt' (8.5) 

where A = A + ( 1/2)ik~JV~l~ 2, and the last equal i ty  has been obtained 
by  integrat ion by  parts.  The sum over D has been replaced by  a factor  
of 2?, and it  is understood t h a t  one must  eventual ly  average over v. 

Now, in the static limit, we have (neglecting angles and polarization, 
since we are only interested in order of magnitude) 

U(r[ r - vt) = exp [-i~f~(r)t] 

V U ~  3 i ~ t e x p ( - i ~ t )  (8.6) 

where f is a uni t  vector in the direction of r. I f  (8.6) is inserted into 
(8.5), one finds 

Rl "" 2m .] dS r (t + t') dtdt' 
0 0 

By performing the t, t' integrations, and making the change of 
variables r = (t~2/A) 1/a O, we obtain 

hjV'/.2/a 
~R1 "" 2mArlS B 

(8.7) 
F dap B = J ps(1 - 1/p a) 
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We can think of this as a correction to the width by writing 

1 1 A 
= ~ ~ ~ -  A- ~ + . . .  (8.8) 

From (8.7) and (8.8), we find 
Aq~ ~ hJV't*21a 

2mA1/~ (8.9) 

where the subscript qs indicates quantum correction on static limit. 
I t  is seen tha t  the correction is always small if one goes sufficiently far 
out on the wings of the line. 

To treat the impact case, we choose our z-axis in the direction of v, 
and treat  only the contribution of ~/az in (8.5). The reader may verify 
that  the result for the other directions is of the same order of magnitude 
as what we will obtain for the ~/~z contribution. From the way U is 
defined, it is clear that  

_a 
V(r + vtlr) = - ~  [ ~ ( r  + vt) u - V ~ ( r ) ]  

az 

from which we obtain 

1 
= ~ { ~ ( r  + vt) U(r + vtlr ) -- U(r + vtlr ) ~ ( r ) }  • 

• ( ~ ( r )  U(r]r -- vt') -- U(rlr - v t ' ) ~ ( r  - vt')} 

I 
~ U(r + vtlr ) ~2 (r )  U(rlr - vt') (8.10) 

where the last approximate equality follows from the fact that,  in 
the impact limit with vt large, the interaction r must be small ~t 
at least two of the positions r, r + vt, r - vt'. The part that  is kept 
is the only part of the whole expression which can ever be very large. 
To estimate the order of magnitude of (8.10), we first move $f2 to 
the left, neglecting the commutator, and obtain 

~f~2(r) U(r § v t l r -  vt') z-~f~2(r) S~(x,y) (8.11) 

where we have used the fact that  U = 5 p wherever ~Y2(r) is appreciable. 
Putt ing (8.11) into (8.5), and doing the t, t' integrations, we find 

JV 
d~ r~f~2(r)~9~(x, y) (8.12) 

. R  1 ~ 2mv2 A ~ d 
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We now note that  r ~ i~e/r ~, and 5 ~ = 5o(i~2/vb2), and make the 
change of variables r = (tx/v 1/~) O. This leads to the result 

hR1 ~- 2m-~-~ A ~ U 

f 5o(1/fl 2) d~p C = p6 (8.13) 

f12 = p 2  + p2  

As a correction to the width, as in (8.9), this becomes 

A q~ ~ hJK/z mVv (8.14) 

This correction is seen to be independent of ~, but  to depend on v. 
Since it is seen to be real, it would just give a shift of the line propor- 
tional to ~ if v were constant. Since v must be averaged over, this 
term will lead to an effective broadening of the line. 

9. Comparison with Exper iment  

During the 1940's, several experimental studies were carried out 
on pressure broadening of the alkali metal doublets (Chen, 1940; 
Watanabe, 1941 ; Gregory, 1942). In all these studies, only the wings 
of the line were observed, and the width deduced with the aid of the 
assumption that  the line was Lorentzian. Since only the wings are 
involved, the static two-body approximation should apply. In  
agreement with theory, the width is observed to vary linearly with the 
density. In order to compare the coefficient with experiment, the 
constant/c, was evaluated for the two components of the doublet in 
Reek et al. (1965). The result is 

7 + 2~/7 _ 2-05 
k ( 3 / 2 )  - 6 

1c(1/2) = 8/3 -~ 2.67 

The broadening is proportional to the oscillator strength times /c, 
and is therefore expected to be greater for the 3/2 component. These 
theoretical values are compared with experiment in Table 3. I t  is 
essentially the same as those given by Reck et al. (1965, Table 1), 
except that  the results are expressed in terms of/~, a minor error has 
been corrected, and the oscillator strength for sodium has been 
corrected to agree with the experimental results of Kibble et al. (1967). 
:For rubidium and cesium, it has been assumed that  the total oscillator 
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strength of the doublet is unity. This is supported by some of the 
experimental data (Kuhn, 1962), but not all (Stone, 1962), so it must 
be concluded that  these oscillator strengths are not known very 
accurately. Since the experimental value of k varies inversely as the 
square of the assumed oscillator strength, it follows that  there is 
some uncertainty in comparing all quantities except the ratio of the 
two k-vMues. I t  is seen that  the agreement is satisfactory, in view of 
these uncertainties. 

The reflection experiments of Lauriston & Welsh (1951) have also 
been discussed (Reek et al., 1965). These were performed on alkali 
metal vapors at temperatures in the vicinity of 1000 ~ K, and pressures 

TABLE 3. Comparison of theory with experiment for broadening in wings of 
alkali metal doublets 

Quantity k(3/2) k(1/2) k(3/2)/k(1/2) l~eference 

Theory: 2.05 2.67 0.768 Present work and 
Reck et al. (1965) 

Experiment:  
Na 2.3 • 0-3 4.1 • 0-5 0.58 =L 0.05 Watanabe (1941) 
I~b 2.2 =k 0.6 2.7 4- 0.9 0.83 =t= 0.07 Chen (1940) 
Cs 2.4 =k 0.3 2.7 4- 0.4 0.9 =k 0.2 Gregory (1942) 

in some cases approaching one atmosphere. Neither limiting approxi- 
mation is really applicable here, since S t ~  2 and v /~ /s  turn  out to be 
of the same order of magnitude. Since (7.6) is not satisfied, many-body 
effects are expected to be important, and in fact it is observed that  
the width varies as the square root of the density rather than linearly. 
The theory developed by Reek et al. (1965), in which a restricted class 
of the many-body interactions is summed in the static approximation, 
gives qualitatively correct results: the square root dependence is 
explained, and the right order of magnitude is obtained for the 
coefficient. These results, therefore, are at least qualitatively explained 
by the present theory. 

Studies of the emission spectrum of Helium have been carried out 
by Kuhn & Vaughan (1964), and by Vaughan (1966). They measured 
the shape of the emission line 3 iS --> 2 ip  (7281 ]~). The shape was 
fitted to a Voigt profile (which it fits very well), and, the 3 iS level 
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being very narrow, the Lorentzian width was interpreted as entirely 
due to the broadening of the 21P level, i.e., of the line 21/~ -* 1 IS 
(584 A). The experiments were done at temperatures ranging from 
l l ~  (Kuhn & Vaughan, 1964) to 280~ (Vaughan, 1966). The 
highest densities were of the order of 101 s atoms per cubic centimetre. 
The oscillator strength for this transition has been accurately cal- 
culated by  Schiff & l%keris (1964), and has the value 0.276, from 
which one calculates 

/z 2 = 1.08 • 10 -9 cm s sec -1 

Equation (4.4.11) is very well satisfied under the conditions of these 
experiments, so one expects the two-body impact approximation to 
be valid. The quantum corrections, however, are not negligible. 
Using equation (8.14), one finds 

Aq~ h 
0.05 

jV.  2 ~ i~mvtv  

where v has been taken as the root-meamsquare velocity at l l ~  
The quantum effects, therefore, should further broaden the line (by 
several percent of the impact-theory broadening), and cause it to 
deviate somewhat from a true Voigt profile. The additional broaden- 
ing is still proportional to the density. I f  one fits the result to Voigt 
profiles, therefore, one would expect the Lorentzian width to vary  
linearly with the density, but  with an observed/c-value of the order 
of several percent larger than the impact result /ci ~-4/3. Experi- 
mentally, Kuhn & Vaughan (1964) found k = 1.61 • 0.11. The result 
of Vaughan (1966), believed to be more accurate, is/c = 1.44 zk 0.09. 
I t  is seen that  there is reasonable agreement, in that  the quantum 
effects are of the right order of magnitude to account for the dis- 
crepancy between the experimental ]c and the result of impact theory. 
The fact that  Vaughan's experimental ]c agrees with that  calculated 
by  Watanabe (1965a, b) and Omont (1966) is evidently fortuitous. I t  is 
also possible, though it seems doubtful, that  quantum effects provide 
part  of the explanation for the observed anomalous extrapolated 
width at zero density observed in these experiments. To test the 
theory more accurately, one would have to t ry  to fit the data to a 
curve satisfying (8.8) and (8.14) folded into a Gaussian, rather than 
a strict Voigt profile. A further problem in interpreting these experi- 
ments is that  there is reason to believe (Lyon, private communication) 
that  there are terms contributing to emission line shapes which are 
not present in absorption. This will be the subject of a future com- 
munication. 
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Finally, one must mention the anomalously large widths (103 times 
theoretical) observed by several workers (Tomiser, 1953, 1954; Moser 
& Sehultz, 1959; Ya'akobi, ]966) in the broadening of alkali metal 
lines. There exists no theoretical explanation at the present time for 
these results, and they appear to be contradicted also by other experi- 
ments (Lauriston & Welsh, 1951; Chen, 1940; Watanabe, 1941; 
Gregory, 1942). I t  may be, therefore, that  these results are in error, 
but it seems clear that  more experimental work needs to be done. 

10. Discussion 

The theory developed here has the advantage of embracing all the 
commonly used approximations as special eases, and permitting a 
systematic study of validity criteria and corrections to them. The 
comparison with experiment is facilitated by obtaining closed form 
solutions for the limiting cases, and is, on the whole, satisfactory. 
Since the properties of the resolvent operator are important in many 
problems other than line shapes, it is hoped that  some of the techniques 
developed here may have a wider applicability. A worthwhile direc- 
tion for further work is the more quantitative study of the corrections 
to the approximations, particularly in the intermediate region between 
the impact and static limits. 

I t  is worth pointing out that  the differential equation and expansion 
used for the resolvent in this article is closely related to the similar 
t reatment  of the statistical operator exp ( - ~ / k T ) ,  which is standard 
in quantum statistical mechanics (Landau & Lifshitz, 1958). This is 
clear because the statistical operator is related to the resolvent by a 
Laplace transform. The relation of the resolvent to this and other 
operators encourages one to hope that  some of the methods used here 
may be applicable to a wider Glass of problems. 
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